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Abstract.- The transcription factor Forkhead box O 1 (FOXOL1) is a key regulator of metabolic processes such
as regulation of the cell cycle and cancer. Different post translational modifications (PTMs) such as phosphorylation,
glycosylation, acetylation, methylation and ubiquitination control the structure, function regulation and subcellular
localization of FOXO1. In this work the role of different modifications and their interplay, involving the regulating the
transcriptional activity of FOXOI, is investigated by using various bio-informatic tools. Amongst these is the
YinOYang prediction method, which predicts Yin Yang sites in proteins (sites, where O-glycosylation and
phosphorylation may compete with each other). Moreover acetylation and methylation may also work together to
regulate FOXO1 transcriptional activity. This study suggest that phosphorylation and acetylation deactivate FOXO1’s
transcriptional activity by disrupting binding between DNA and FOXO1, and promote i#s cytoplasmic localization and
degradation of the FOXO1 transcription factor. Furthermore, glycosylation and methylation increase the DNA binding
affinity and enhance nuclear accumulation of FOXO1 and promote transcriptional activity. Thus this in silico work
suggests that different modifications play an important role in the regulation of FOXO1’s transcriptional activity and
its target genes.
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INTRODUCTION

FOXO is a subfamily of Forkhead Box

(FOX) transcription factors, and is further divided
into FOXOI1, FOXO03, FOXO4 and FOXO6
(Maiese et al., 2008). The FOXO transcriptional
factors play a critical role in many biological
processes such as regulation of cell cycle, oxidative
stress, DNA repair, longevity and cancer (Ouyang et
al., 2009; Yuan et al., 2008; Kuo et al., 2008;
Hoekstra et al., 2008; Lehtinen et al., 2006).

FOXO1 also known as forkhead in
rhabdomyosarcomas (FHKR) and is a downstream
target of insulin signaling pathway. FOXO1 is an
important regulator of cellular processes such as
apoptosis, aging and stress response (Cheng and
White, 2010; Kuo et al., 2008; Berry et al., 2009;
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Bartek and Lukas 2006; D’Alessandris et al., 2004;
Kim et al., 2008). It is ubiquitously expressed, but is
highly expressed in pancreatic beta cells, adipose
tissues and muscles. FOXO1 contains a conserved
forkhead DNA binding domain (DBD) also known
as winged helix, which comprises 3 beta sheets, 3
alpha helixes and 2 loops. The FOXO1 transcription
factor binds to the consensus DNA sequence
TTGTTTTG in the promoter through its DBD
(Cheng and White, 2010).

FOXO1 is regulated through interplay
between different post translational modifications
(PTMs)  like  phosphorylation,  acetylation,
methylation, glycosylation, and ubiqutination
occurring in or near the DBD (Brent et al., 2008).
These modifications affect the transcriptional
activity, DNA binding affinity and localization of
FOXOI1 transcriptional factor in nucleoplasm or
cytoplasm (Van Der Heide et al., 2004). The
Ser/Thr kinase Akt induces phosphorylation of
FOXOI, and inhibits the binding between DNA and
FOXO1, which increases cytoplasmic localization
of FOXOI1 from the nucleus. In the cytoplasm
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phosphorylated FOXO1 1is ubiquitinated, which
leads to its degradation (Huang et al., 2006;
Matsuzaki et al., 2003).

FOXOLI is activated through phosphorylation
in pre-prandial, oxidative stress and insulin
resistance conditions, while in postprandial and
insulin sensitive conditions its activity is inhibited
by dephosphorylation (Dong et al., 2010).
Phosphorylated and dephosphorylated FOXO1 both
causes disruption in metabolism homeostasis. The
hyperphosphorylated FOXO1 transcription factor
during insulin resistance may cause hyperglycemia
and dyslipidemia (Cheng and White, 2010), whereas
hypo-activated FOXO1 may disrupt T cell
homeostasis (Ouyang et al., 2009) and B cell
proliferation (Kitamura et al., 2005).

Glycosylation plays an important role in cell
signaling, transcriptional and translational activity,
cell survival, and cellular immunity. Glycosylation
is a dynamic modification like phosphorylation,
which takes place on Ser and/or Thr residues in the
protein. A dynamic interplay between these two
modifications, also known as Yin Yang sites, have
been shown to control biological processes such as
transcription, apoptosis etc. Furthermore O-
GlcNAcylation of FOXOI1  increases its
transcriptional activity (Kuo et al., 2008).

In this study the interplay of different PTMs
especially glycosylation and phosphorylation,
acetylation and methylation, phosphorylation and
methylation inversely regulates the activity and
translocation of FOXO1 are studied using different
bio-informatics tools. The in silico investigation
suggests that the interplay between phosphorylation
and glycosylation, acetylation and methylation on
specific sites may control the transcriptional activity
of FOXOI1 and hence regulate various metabolic
processes like beta cell proliferation, energy
homeostasis, glucose consumption in blood,
inflammation, oxidative stress responses.

MATERIALS AND METHODS

The sequence of FOXO1 of Mus musculus
was retrieved from Swiss-Prot with an accession
number QIR1EOQ, Swiss-Prot ID FOXO1 _MOUSE
and gene name FOXO1 (Boeckmann et al., 2003).
Blast search was performed using NCBI data to find

the orthologues (Altschul et al., 1997). The search
resulted in 12 selected orthologues (Table I) each
having E—value zero to 3e-151 and similarity of 52-
100%. The selected orthologues were multiply
aligned using ClustalW2 with default parameters.

Table I.- The accession # of 12 orthologues of FOXO1
Accession # Specie

QIRI1E0.1 Mus musculus
NP_001178775.1 Rattus norvegicus

Q810W5.1 Spermophilus tridecemlineatus
XP_583090.4 Bos taurus

AAM19156.1 Sus scrofa

NP_002006.2 Homo sapiens

XP_522749.2 Pan troglodytes

NP _989659.1 Gallus gallus

NP_001008016.1
NP_001086417.1
NP_001070725.2
NP_001153936.1

Xenopus (Silurana) tropicalis
Xenopus laevis

Danio rerio

Oryzias latipes

The glycosylation and Yin Yang sites of
FOXO1 in Mus musculus were predicted using

YingOYang 1.2 (http://www.cbs.dtu.dk/services/
YinOYang/). The phosphorylation sites were
determined using NetPhos 2.0 (http://www.

cbs.dtu.dk/services/NetPhos 2.0/) and DIPHOS 1.3
(http://www.ist.temple.edu/disphos/). The potential
acetylation and methylation sites were predicted
using PAIL (http://bdmpail.biocuckoo.org/
prediction.php) and MeMo (http://www.
bioinfo.tsinghua.edu.cn/~tigerchen/memo.html),
respectively.

NetPhos 2.0 (Blom et al., 1999) and DIPHOS
1.3 (Iakoucheva et al., 2004) both are neural
networks and trained by dataset of patterns of both
modified and non modified proteins. NetPhos 2.0
uses phosphorylation data from phosphobase while
DIPHOS 1.3 wuses sequence and disordered
information phosphorylated proteins obtained from
Phospho.ELM database. PAIL (Li et al., 2006)
predict the acetylation on internal Lys using
Bayesian Discriminant Method while MeMo is
working on support vector machine method and
predicts methylation on Lys and Arg residues.
YinOYang 1.2 is a neural network and trained a
dataset of 40 experimentally known glycosylation
sites to recognize the sequence context and surface
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accessibility. YinOYang can also predict the Yin
Yang sites with a variable threshold.

RESULTS AND DISCUSSION

The interplay between different PTMs such
as phosphorylation and glycosylation,
phosphorylation and acetylation, phosphorylation
and methylation is known to play a key role in the
functional regulation of different proteins (Kaleem
et al.,, 2009, 2010). In this work the internal
relationship of above mentioned modifications in
FOXOI1 has been investigated using various bio-
informatics tools.

The activity of FOXO!1 is controlled by
different PTMs, and hence regulates various
metabolic processes. In this study the role of PTMs
in FOXO1 of Mus musculus has been investigated
and compared with their evolutionary status in
different orthologues. The multiple alignment of
FOXO1 (Fig. 1) shows that all orthologues have
very high similarity and are almost conserved in
their DNA binding region (156-232 amino acids).
The DIPHOS 1.3 server predicted 19
phosphorylation sites (13 sites are conserved (C)
and 6 sites are non-conserved (NC)), while the
Netphos 2.0 server predicted 60 potential
phosphorylation sites (32 sites are C, 25 are NC, and
3 are conserved substitution (CS)) (Table II). The
YinOYang 1.2 server has predicted 44 potential O-
GlcNAc sites (19C, 23NC and 2CS). Furthermore
20 potential Yin Yang sites were predicted (11 Yin
Yang sites are C, 6 are NC and 3 are CS among
different orthologues) (Fig. 1). Amongst all the
potential predicted phosphorylation sites only seven
are experimently determined in vitro and in vivo,
while only four O-glycosylation sites are determined
experimentally in vitro (Hatta et al., 2009; Housley
et al., 2008; Yamagata et al., 2008; Rena et al.,
2002) (Table II). In vitro and in vivo analysis
showed S209 as target site for Mammalian sterile
20-like 1 (MST1) induced phosphorylation, but
neither Netphos 2.0 nor DIPHOS 1.3 has predicted
S209 as positive potential site. The interplay
between  glycosylation and  phosphorylation
regulates the transcriptional activity of FOXOI1
transcription factor by increasing or decreasing its
DNA binding affinity, as these modifications are

inversely regulated. Phosphorylation of FOXOI
occurs in response to insulin, which increases the
negative charge on FOXOI, thereby disrupting its
DNA binding and increases the nuclear exclusion.
Once in the cytoplasm phosphorylation of FOXO1
promotes poly-ubiquitination, which results in
degradation. FOXO1 is phosphorylated using
different kinases, all kinases except cyclin
dependent kinase 1 (CDK1) and MST1 reduces the
DNA binding affinity and nuclear localization
(Yuan et al., 2008; 2009; Huang et al., 2006).
FOXO1 is glycosylated through hexoseamine
glycosylated pathway in insulin resistance and
oxidative stress conditions (Housley et al., 2008).

In response to insulin signaling FOXOI
undergoes phosphorylation at T24, S316, S253 by
protein kinase B also known as Akt, which inhibit
FOXO1 transcriptional activity. Furthermore
phosphorylation of FOXO1 decreases its interaction
with DNA and hence reduces the expression of its
targeted genes (Matsuzaki et al., 2005). This
chromosomal translocation promotes interaction of
FOXO1 with 14-3-3 proteins. S316 is also a
potential Yin Yang site predicted by YinOYang
server. Although experimental analysis of FOXO1
have shown that S316 is not a potential
glycosylation site, but mutating of S316 to alanine
lead to an increase of glycosylation at T314 (also a
potential Yin Yang site) suggesting an interplay
between glycosylation and phosphorylation at
distinct sites (Housley et al., 2008). Akt mediated
phosphorylation of FOXO1 protein activates nuclear
factor kappa B (Nf-kB), which mediates
inflammation induced by oxidative stress during
aging. Thus by inhibition of FOXOI1
phosphorylation during caloric restriction causes an
increase in expression of the catalase gene and
suppression  of  oxidative  stress  induced
inflammation (Kim et al., 2008). Akt induced
phosphorylation at S316 causes casein kinase 1
(CK1) to phosphorylate S319 and then stimulate
phosphorylation at S322 (Rena et al., 2002). Dual-
specificity tyrosine-phosphorylated and regulated
kinase 1A (DYRKI1A) phosphorylate S326 of
FOXOI1 in non-insulin stimulated cells and reduces
the nuclear localization and transactivation of
FOXOI transcription factor (Woods et al., 2001).
Mammalian sterile 20-like 1 (MST1) and CDKI1
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Fig. 1. Multiple sequence alignment of 7 Mammalian and 5 Non-Mammalian species using ClustalW2. Yellow

colors indicated the potential Yin Yang sites

induced phosphorylation at S209 and S246
respectively, of FOXO1 and reduce its interaction
with  14-3-3  protein and enhance nuclear
accumulation in neurons and promote neuron cell

death (Yuan et al., 2008, 2009), while the CDK2
induced phosphorylation at S246 is known to
decrease  nuclear localization and  inhibit
transcriptional activity (Huang et al., 2006).
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Table I1.-  The potential predicted and experimentally known sites of phosphorylation, glycosylation and Yin Yang sites.

Experimentally

Position Amino Acid DIPHOSPHO 2.0 NetPhos1.2 YinYangsite O-GIcNAc sites Conservation status

known
22 S - + - - - C
24 T + - - - + C
37 S - + + + - C
38 T - - - + - C
39 T - - + - NC
40 S - + + + - C
41 S - - - + - C
45 S + + + + - C
57 S + - - - - NC
62 S - + - - - NC
65 S - + - - - NC
66 T - - - + - NC
73 S + - - - NC
78 S - + - - - NC
122 T - - - + - NC
126 S + + + + - NC
134 S + - - + - NC
149 T - + + + - CS
150 S + + + + - C
151 S - + + + - C
152 S - + - - - C
161 S - + - - - C
172 S - + - - - C
200 S + - - - C
209 S - - - - + C
228 T - + - - - C
243 S + + - - - NC
246 S + + - - + C
253 S + + - - + C
263 S + + - - - C
273 S + - - - - CS
276 S + + - - - NC
284 S + + - - - C
287 S + - - - - C
295 S + + - - - C
298 S + + + + - NC
300 S - + - - - C
309 T - + + + - CS
314 T - + + + + C
315 S - - + + - C
316 S + + + + + C
319 S + + - - + C
322 S + - - + + C
326 S - + - - + C
330 T - + - - - C
348 S - - - + - C
354 S - - - + - CS
358 S - + - - - C
360 S - + - - - CS
363 S - + - - - NC
380 S - + - - - NC
383 S - + + + - NC

Continued
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Position Amino Acid DIPHOSPHO 2.0 NetPhos1.2 Yin Yangsite O-GIcNAc sites EXpekrr:?ngta”y Conservation status
385 T - - - + - NC
387 S - + + + - C
388 T - - - + - NC
390 S - + + + - C
391 S - + - - - Cc
394 S - + - - - NC
399 T - + + + - CS
403 S - - - + - NC
409 T - - - + - CS
410 S - - - + - NC
413 S - + - - - NC
415 S - + - - - NC
422 T - - - + - NC
427 S - + - - - NC
429 S - + - - - NC
438 T - + + + - NC
444 S - + - - - NC
465 S - + - - - C
467 S - + - - - NC
475 S - + - - - NC
486 S - - - + - NC
528 T - + - - - NC
546 T - - - + - NC
553 T - + - - - NC
557 T - + + + - NC
564 S - - - + - NC
570 S - - - + - NC
576 S - - - + - NC
577 S - - - - - NC
579 S - + + + - NC
597 S - + - - - C
613 S - + - - - CS
637 S - - - + - NC
641 S - + - - - NC
644 T - - - + _ c
645 T - - - + + c
646 T - + - - - C
648 S - + + + - C
651 S - - - + + C

Footnote: C, conserved, NC, not conserved; CS, conserved substitution.

During insulin resistant conditions O-linked
N-acetylglucosamine transferase (OGT) glycosylate
FOXO1, which inhibits phosphorylation of FOXO1,
and thus increases its nuclear localization and
enhances the transcriptional activity of FOXOI
(Housley et al., 2009; Kuo et al., 2008). The
residues T314, S547, T645, and S651 are
experimentally known glycosylation sites (Housley
et al., 2008). In insulin resistant conditions, FOXO1
glycosylation increases the activities of the
glycogenic proteins in liver, and over expression of

glycosylated FOXO1 may lead to gluconeogenesis.
In insulin induced conditions FOXO1 is excluded
from the nucleus resulting in reduction of
gluconeogenesis. Muscles  overexpression  of
FOXO1 may lead to lipogenesis as it increases the
lipid contents in the muscles (Cheng and White
2010). In starvation, inhibition of Akt pathway
causes increase glycosylation of FOXO1 in liver
causes hyperglycemia (Kuo et al., 2008). Thus
phosphorylation and glycosylation plays an
important role in regulation of transcriptional
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activity of FOXO1.

Acetylation and methylation also play an
important role in various transcription factors such
as FOXOI1 (Yamagata et al., 2008; Hatta et al.,
2009).  Acetylation of FOXOl  promotes
phosphorylation and inhibit glycosylation, while
methylation at sites R248 and R250 of FOXOI1 are
known to block Akt mediated phosphorylation of
FOXO1, and inhibits nuclear exclusion of FOXO1
(Yamagata et al., 2008) and thus increases the
glycosylation. Potential acetylation and methylation
sites are predicted using bio-informatic tools. 19
sites (15C and 4NC) for acetylation and 6 sites for
methylation have been positively predicted by using
PAIL and MeMo respectively (Table III). Only 1
methylation site and 3 acetylation sites are
experimentally known (Yamagata et al., 2008).

In oxidative stress, acetylation of FOXOI
occurs at lysines K242, K245 and K262 by p300.
Acetylation enhances phosphorylation of FOXO1 at
S253, which decreases the DNA binding and
increases the rate of phosphorylation at other Akt
induced phosphorylation sites (Hatta et al., 2009;
Matsuzaki et al., 2005). Thus phosphorylation and
acetylation co-exist to regulate the function and
localization of transcription factor. In the cytoplasm
acetylation inhibits ubiquitination, thus preventing
FOXO1 degradation (Kitamura et al., 2005). If
phosphorylated FOXO1 is not acetylated, it
undergoes SCF (Skpl-Cullinl-F-box protein)-Skp2
(S phase kinase-associated protein 2) mediated
ubiquitination and degradation. So acetylation and
ubiquitination compete for the survival of FOXO1
transcriptional factor in cytoplasm.

Table I11.-  Potential predicted sites of acetylation and
methylation using PAIL and MeMo.

PTM Position

Acetylation K148, K176, K195, K197, K207, K242, K245,
K259, K262, K269, K270, K271, K351, K420,
K443, K460, K512, K594, K643

Methylation R98, R250, R264, R266

on Arginine

Methylation K207, K270

on Lysine

The importance of interplay of different

PTMs in regulation of transcriptional activities of
various transcriptional factors has been described by
us previously (Kaleem et al., 2008, 2009, 2010;
Nasir-ud-Din et al., 2010). Phosphorylation and
glycosylation interplay plays an important role in
regulation of transcriptional activity of wvarious
transcriptional factors. FOXO1 binding affinity to
DNA and translocation is also shown to be regulated
by this PTM switching. The phosphorylation of
FOXO1 at S316 inhibits the glycosylation at T314
and thus decreasing the DNA binding affinity. In the
similar fashion, glycosylation at T314 causes an
increase in DNA binding and nuclear accumulation
while a decrease in Akt induced phosphorylation at
S316. This study has shown an overview of the
FOXO1 binding regulation with DNA through
interplay of PTMs mainly the phosphorylation-
glycosylation and acetylation-methylation, and
methylation-phosphorylation which compete for the
same or neighboring sites (Fig. 2). FOXOI is
required for proper functioning of many cellular
biochemical processes such as metabolism and
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Foxo1 @

PROBOW

description  of

Fig 2.
translocation of FOXO1. The glycosylation by
OGT methylation by protein arginine methyl
transferase 1 (PRMT1), and phosphorylation
suing CDK1 and MST1 promotes FOXO1
binding with DNA and enhance nuclear

Mechanistic

accumulation.  Acetylation by p300 and
phosphorylation of FOXO1 using different
kinases like Akt, CKl1, CDK2, DYRKIA
reduces DNA binding affininty of FOXO1 and
enhance cytoplasm localization where FOXO1
undergoes degradation upon deacetylation by
Sirtl.
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immune responses. The interplay between
phosphorylation and glycosylation regulate sub-
cellular localization of FOXO1, and affect processes
such as apoptosis, gluconeogenesis and lipogenesis.
Similarly if methylation of FOXO1 occurs in
vicinity of acetylation and phosphorylation, it may
lead to deacetylation of FOXOI, and promote
binding between DNA and FOXO1. Our results also
suggest that two residues K207 and K270 are
equally susceptible to both acetylation and
methylation, and thereby directly inhibit the effect
of each other. Methylation of FOXOI1 inhibits
phosphorylation, and acetylation, and may promote
glycosylation and enhance FOXOI1 transcriptional
activity. The internal interplay between different
PTMs provides multifunctionality to the proteins.
This multifunctional character regulates the
transcriptional activity of various genes and has a
crucial role in pathological conditions.
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